3.111 \(\int \frac{x^2}{(b \sqrt{x}+a x)^{3/2}} \, dx\)

Optimal. Leaf size=139 \[ \frac{35 b^2 \sqrt{a x+b \sqrt{x}}}{4 a^4}-\frac{35 b^3 \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{x}}{\sqrt{a x+b \sqrt{x}}}\right )}{4 a^{9/2}}-\frac{35 b \sqrt{x} \sqrt{a x+b \sqrt{x}}}{6 a^3}+\frac{14 x \sqrt{a x+b \sqrt{x}}}{3 a^2}-\frac{4 x^2}{a \sqrt{a x+b \sqrt{x}}} \]

[Out]

(-4*x^2)/(a*Sqrt[b*Sqrt[x] + a*x]) + (35*b^2*Sqrt[b*Sqrt[x] + a*x])/(4*a^4) - (35*b*Sqrt[x]*Sqrt[b*Sqrt[x] + a
*x])/(6*a^3) + (14*x*Sqrt[b*Sqrt[x] + a*x])/(3*a^2) - (35*b^3*ArcTanh[(Sqrt[a]*Sqrt[x])/Sqrt[b*Sqrt[x] + a*x]]
)/(4*a^(9/2))

________________________________________________________________________________________

Rubi [A]  time = 0.126971, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {2018, 668, 670, 640, 620, 206} \[ \frac{35 b^2 \sqrt{a x+b \sqrt{x}}}{4 a^4}-\frac{35 b^3 \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{x}}{\sqrt{a x+b \sqrt{x}}}\right )}{4 a^{9/2}}-\frac{35 b \sqrt{x} \sqrt{a x+b \sqrt{x}}}{6 a^3}+\frac{14 x \sqrt{a x+b \sqrt{x}}}{3 a^2}-\frac{4 x^2}{a \sqrt{a x+b \sqrt{x}}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(b*Sqrt[x] + a*x)^(3/2),x]

[Out]

(-4*x^2)/(a*Sqrt[b*Sqrt[x] + a*x]) + (35*b^2*Sqrt[b*Sqrt[x] + a*x])/(4*a^4) - (35*b*Sqrt[x]*Sqrt[b*Sqrt[x] + a
*x])/(6*a^3) + (14*x*Sqrt[b*Sqrt[x] + a*x])/(3*a^2) - (35*b^3*ArcTanh[(Sqrt[a]*Sqrt[x])/Sqrt[b*Sqrt[x] + a*x]]
)/(4*a^(9/2))

Rule 2018

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)
/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]

Rule 668

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] - Dist[(e^2*(m + p))/(c*(p + 1)), Int[(d + e*x)^(m - 2)*(a + b*x +
 c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &
& LtQ[p, -1] && GtQ[m, 1] && IntegerQ[2*p]

Rule 670

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[((m + p)*(2*c*d - b*e))/(c*(m + 2*p + 1)), Int[(d + e
*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 -
b*d*e + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2}{\left (b \sqrt{x}+a x\right )^{3/2}} \, dx &=2 \operatorname{Subst}\left (\int \frac{x^5}{\left (b x+a x^2\right )^{3/2}} \, dx,x,\sqrt{x}\right )\\ &=-\frac{4 x^2}{a \sqrt{b \sqrt{x}+a x}}+\frac{14 \operatorname{Subst}\left (\int \frac{x^3}{\sqrt{b x+a x^2}} \, dx,x,\sqrt{x}\right )}{a}\\ &=-\frac{4 x^2}{a \sqrt{b \sqrt{x}+a x}}+\frac{14 x \sqrt{b \sqrt{x}+a x}}{3 a^2}-\frac{(35 b) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{b x+a x^2}} \, dx,x,\sqrt{x}\right )}{3 a^2}\\ &=-\frac{4 x^2}{a \sqrt{b \sqrt{x}+a x}}-\frac{35 b \sqrt{x} \sqrt{b \sqrt{x}+a x}}{6 a^3}+\frac{14 x \sqrt{b \sqrt{x}+a x}}{3 a^2}+\frac{\left (35 b^2\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{b x+a x^2}} \, dx,x,\sqrt{x}\right )}{4 a^3}\\ &=-\frac{4 x^2}{a \sqrt{b \sqrt{x}+a x}}+\frac{35 b^2 \sqrt{b \sqrt{x}+a x}}{4 a^4}-\frac{35 b \sqrt{x} \sqrt{b \sqrt{x}+a x}}{6 a^3}+\frac{14 x \sqrt{b \sqrt{x}+a x}}{3 a^2}-\frac{\left (35 b^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b x+a x^2}} \, dx,x,\sqrt{x}\right )}{8 a^4}\\ &=-\frac{4 x^2}{a \sqrt{b \sqrt{x}+a x}}+\frac{35 b^2 \sqrt{b \sqrt{x}+a x}}{4 a^4}-\frac{35 b \sqrt{x} \sqrt{b \sqrt{x}+a x}}{6 a^3}+\frac{14 x \sqrt{b \sqrt{x}+a x}}{3 a^2}-\frac{\left (35 b^3\right ) \operatorname{Subst}\left (\int \frac{1}{1-a x^2} \, dx,x,\frac{\sqrt{x}}{\sqrt{b \sqrt{x}+a x}}\right )}{4 a^4}\\ &=-\frac{4 x^2}{a \sqrt{b \sqrt{x}+a x}}+\frac{35 b^2 \sqrt{b \sqrt{x}+a x}}{4 a^4}-\frac{35 b \sqrt{x} \sqrt{b \sqrt{x}+a x}}{6 a^3}+\frac{14 x \sqrt{b \sqrt{x}+a x}}{3 a^2}-\frac{35 b^3 \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{x}}{\sqrt{b \sqrt{x}+a x}}\right )}{4 a^{9/2}}\\ \end{align*}

Mathematica [C]  time = 0.0430175, size = 64, normalized size = 0.46 \[ \frac{4 x^{5/2} \sqrt{\frac{a \sqrt{x}}{b}+1} \, _2F_1\left (\frac{3}{2},\frac{9}{2};\frac{11}{2};-\frac{a \sqrt{x}}{b}\right )}{9 b \sqrt{a x+b \sqrt{x}}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(b*Sqrt[x] + a*x)^(3/2),x]

[Out]

(4*Sqrt[1 + (a*Sqrt[x])/b]*x^(5/2)*Hypergeometric2F1[3/2, 9/2, 11/2, -((a*Sqrt[x])/b)])/(9*b*Sqrt[b*Sqrt[x] +
a*x])

________________________________________________________________________________________

Maple [B]  time = 0.01, size = 503, normalized size = 3.6 \begin{align*}{\frac{1}{24}\sqrt{b\sqrt{x}+ax} \left ( 16\,x \left ( b\sqrt{x}+ax \right ) ^{3/2}{a}^{9/2}-60\,\sqrt{b\sqrt{x}+ax}{a}^{9/2}{x}^{3/2}b+32\,\sqrt{x}{a}^{7/2} \left ( b\sqrt{x}+ax \right ) ^{3/2}b-150\,\sqrt{b\sqrt{x}+ax}{a}^{7/2}x{b}^{2}+240\,{a}^{7/2}x\sqrt{\sqrt{x} \left ( b+a\sqrt{x} \right ) }{b}^{2}-120\,{a}^{3}\ln \left ( 1/2\,{\frac{2\,\sqrt{\sqrt{x} \left ( b+a\sqrt{x} \right ) }\sqrt{a}+2\,a\sqrt{x}+b}{\sqrt{a}}} \right ) x{b}^{3}+16\,{a}^{5/2} \left ( b\sqrt{x}+ax \right ) ^{3/2}{b}^{2}-120\,\sqrt{x}{a}^{5/2}\sqrt{b\sqrt{x}+ax}{b}^{3}+480\,{a}^{5/2}\sqrt{x}\sqrt{\sqrt{x} \left ( b+a\sqrt{x} \right ) }{b}^{3}-96\,{a}^{5/2} \left ( \sqrt{x} \left ( b+a\sqrt{x} \right ) \right ) ^{3/2}{b}^{2}-240\,{a}^{2}\ln \left ( 1/2\,{\frac{2\,\sqrt{\sqrt{x} \left ( b+a\sqrt{x} \right ) }\sqrt{a}+2\,a\sqrt{x}+b}{\sqrt{a}}} \right ) \sqrt{x}{b}^{4}+15\,\ln \left ( 1/2\,{\frac{2\,a\sqrt{x}+2\,\sqrt{b\sqrt{x}+ax}\sqrt{a}+b}{\sqrt{a}}} \right ) x{a}^{3}{b}^{3}-30\,{a}^{3/2}\sqrt{b\sqrt{x}+ax}{b}^{4}+240\,\sqrt{\sqrt{x} \left ( b+a\sqrt{x} \right ) }{a}^{3/2}{b}^{4}-120\,\ln \left ( 1/2\,{\frac{2\,\sqrt{\sqrt{x} \left ( b+a\sqrt{x} \right ) }\sqrt{a}+2\,a\sqrt{x}+b}{\sqrt{a}}} \right ) a{b}^{5}+30\,\ln \left ( 1/2\,{\frac{2\,a\sqrt{x}+2\,\sqrt{b\sqrt{x}+ax}\sqrt{a}+b}{\sqrt{a}}} \right ) \sqrt{x}{a}^{2}{b}^{4}+15\,\ln \left ( 1/2\,{\frac{2\,a\sqrt{x}+2\,\sqrt{b\sqrt{x}+ax}\sqrt{a}+b}{\sqrt{a}}} \right ) a{b}^{5} \right ){a}^{-{\frac{11}{2}}}{\frac{1}{\sqrt{\sqrt{x} \left ( b+a\sqrt{x} \right ) }}} \left ( b+a\sqrt{x} \right ) ^{-2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b*x^(1/2)+a*x)^(3/2),x)

[Out]

1/24*(b*x^(1/2)+a*x)^(1/2)/a^(11/2)*(16*x*(b*x^(1/2)+a*x)^(3/2)*a^(9/2)-60*(b*x^(1/2)+a*x)^(1/2)*a^(9/2)*x^(3/
2)*b+32*x^(1/2)*a^(7/2)*(b*x^(1/2)+a*x)^(3/2)*b-150*(b*x^(1/2)+a*x)^(1/2)*a^(7/2)*x*b^2+240*a^(7/2)*x*(x^(1/2)
*(b+a*x^(1/2)))^(1/2)*b^2-120*a^3*ln(1/2*(2*(x^(1/2)*(b+a*x^(1/2)))^(1/2)*a^(1/2)+2*a*x^(1/2)+b)/a^(1/2))*x*b^
3+16*a^(5/2)*(b*x^(1/2)+a*x)^(3/2)*b^2-120*x^(1/2)*a^(5/2)*(b*x^(1/2)+a*x)^(1/2)*b^3+480*a^(5/2)*x^(1/2)*(x^(1
/2)*(b+a*x^(1/2)))^(1/2)*b^3-96*a^(5/2)*(x^(1/2)*(b+a*x^(1/2)))^(3/2)*b^2-240*a^2*ln(1/2*(2*(x^(1/2)*(b+a*x^(1
/2)))^(1/2)*a^(1/2)+2*a*x^(1/2)+b)/a^(1/2))*x^(1/2)*b^4+15*ln(1/2*(2*a*x^(1/2)+2*(b*x^(1/2)+a*x)^(1/2)*a^(1/2)
+b)/a^(1/2))*x*a^3*b^3-30*a^(3/2)*(b*x^(1/2)+a*x)^(1/2)*b^4+240*(x^(1/2)*(b+a*x^(1/2)))^(1/2)*a^(3/2)*b^4-120*
ln(1/2*(2*(x^(1/2)*(b+a*x^(1/2)))^(1/2)*a^(1/2)+2*a*x^(1/2)+b)/a^(1/2))*a*b^5+30*ln(1/2*(2*a*x^(1/2)+2*(b*x^(1
/2)+a*x)^(1/2)*a^(1/2)+b)/a^(1/2))*x^(1/2)*a^2*b^4+15*ln(1/2*(2*a*x^(1/2)+2*(b*x^(1/2)+a*x)^(1/2)*a^(1/2)+b)/a
^(1/2))*a*b^5)/(x^(1/2)*(b+a*x^(1/2)))^(1/2)/(b+a*x^(1/2))^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{{\left (a x + b \sqrt{x}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^(1/2)+a*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^2/(a*x + b*sqrt(x))^(3/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^(1/2)+a*x)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\left (a x + b \sqrt{x}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b*x**(1/2)+a*x)**(3/2),x)

[Out]

Integral(x**2/(a*x + b*sqrt(x))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^(1/2)+a*x)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError